SVGAR_sf: A novel computational algorithm to discover driver structural variant genes within cancer patient cohorts

Xavi Loinaz, Chip Stewart, Johnathan Dagan, JB Alberge, **Andrew Dunford, Julian Hess, Esther** Rheinbay, Rameen Beroukhim, Gad Getz

Getz Lab, Cancer Genome Computational Analysis Group

ABSTRACT

Major international cancer genomics projects are aimed at finding genomic drivers of cancer in order to develop appropriate treatments. Many such genomic drivers pertain to structural variants (SVs) within the cancer genome, where genomic breakpoints in various regions attach aberrantly to other regions. SVGAR_sf (Structural Variant Gene Annotation-Related significance finder; pronounced "sugar S.F.") is a novel computational algorithm that finds enrichment of certain types of SVs based on their functional annotation to certain genes (i.e. loss-of-function or gain-of-function), leading to discovery of putative SV driver genes within cohorts of cancer patients. Applied to the diffuse large B-cell lymphoma (DLBCL) cohort from the National Cancer Institute's Clinical Trial Sequencing Project as well as a 902-patient multiple myeloma cohort, we recapitulate approximately a dozen known drivers for each cancer type as well as novel candidates, outperforming other existing baseline methods.

BACKGROUND

Structural variants (SVs) are classified as deletions, tandem duplications, inversions, and translocations of the genome of significant length (encompassing at least hundreds of base pairs). They comprise a predominant form of somatic aberration for various cancer types, and a subset of these aberrations are also known to drive such cancer types.

Historically in the field of cancer biology, however, there have been a lack of established methods to infer driver genes via structural variation within cohorts of cancer patients. Such methods have been well-established for mutations (such as MutSig2CV¹ and DIG²) and copy number alterations (such as GISTIC2.0³ and BISCUT⁴) but not as much for structural variation even while structural variant cancer drivers are of comparable, if not sometimes greater, aetiological impact. For example, in chronic myeloid leukemia (CML), the BCR-ABL1 fusion is known to be the main driver of the cancer. Martinez-Fundichely et al. recently published CSVDriver⁵ in *Nature Communications* in September 2022 for inferring driver genes via structural variation, but here we show that the method we've developed, SVGAR_sf (Structural Variant Gene Annotation-Related significance finder; pronounced "sugar S.F."), significantly outperforms CSVDriver for the two cohorts we've tested both methods on.

RESULTS

gene	LOF q-value	Expected according to JB	Comment by JB
IGLL5	1.97E-42	TRUE	VDJ recombination
TRAF3	1.28E-19	TRUE	14q target common
NSD2	8.52E-09	TRUE	IGH translocation ta
SP140	4.77E-06	TRUE	known driver mutat
CDKN2C	1.91E-04	TRUE	known driver del 1p
SP140L	7.7E-04	TRUE	known driver SP14
PRSS2	7.7E-04		not in hg19? but de
wwox	8.98E-04	TRUE	actually MAF is the
PRR14L	1.61E-03		
MFF	2.33E-03		
EMSY	2.58E-03		
MTRNR2L6	3.75E-03		strange region on o
RB1	5.51E-03	TRUE	known driver
AMN	5.98E-03		same as TRAF3 / IC
SDCCAG8	6.77E-03		1q
CDKN2A	2.51E-02	TRUE	known driver
GPR180	2.61E-02		TGDS neighbor on
ICE1	5.06E-02		
TBL1XR1	9.27E-02		
DIAPH2	1.04E-01	TRUE	known SV hotspot
TRAF2	1.13E-01	TRUE	known driver
SP100	1.18E-01	TRUE	known SP140 drive
HERC3	1.44E-01		
NSMCE2	1.44E-01		
TGDS	1.59E-01	TRUE	suspected driver ch
PLPP5	2.26E-01		
ARHGAP10	2.31E-01		nr3c2 neighbor?

SVGAR_sf results for CTSP DLBCL:

Note: Had to redact gene names because CTSP DLBCL data is confidential

SVGAR sf METHODOLOGY

SVGAR_sf results for SU2C multiple myeloma:

n, physiologic LOF (IGLL5 is also IGLV1)
n double hit
arget
ted
р
0 cluster
eletions look OK. region on chr7
target (GOF) and WWOX a long gene neighbor
chr7 to be reviewed
GH hotspot?
chr13
on chrX
er cluster
hr13

CSVDriver results for SU2C multiple myeloma:

Key points:

- Most CSVDriver hits did not seem relevant or known to multiple myeloma
- Although this analysis has not been finalized for the results of the most recent version of SVGAR sf, it seems that SVGAR sf's hits were also depleted in terms of RNA for CTSP DLBCL, acting as an orthogonal signal validating SVGAR sf's hits
- This analysis has not been finalized for the results of the most recent version of SVGAR_sf, but it seemed that for CTSP DLBCL there were many gene hits from SVGAR_sf that were not picked up by by corresponding peaks on GISTIC

CONCLUSION

Overall, SVGAR_sf shows promising results to predict driver genes via structural variation better than other established methods in the field. Currently work is being done to expand its functionality to discover gain-of-function drivers. More extensive validation of such driver hits can be performed through analyzing RNA-seq data as well as looking at the Cancer Dependency Map. We hope to test SVGAR_sf on other cohorts such as those from PCAWG to further validate it and adjust it as necessary.

REFERENCES

- 1) Lawrence, M. S., et al. (2014, January 5). Discovery and saturation analysis of cancer genes across 21 tumour types. Nature.
- 2) Sherman, M. A., Yaari, A. U., Priebe, O., et al. (2022, June 20). Genome-wide mapping of somatic mutation rates uncovers drivers of cancer. *Nature Biotechnology*.
- 3) Mermel, C. H., et al. (2011, April 28). GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers - genome biology. *Genome Biology*.
- 4) Shih, J., et al. (2023, June 28). Cancer aneuploidies are shaped primarily by effects on tumour fitness. *Nature*.
- 5) Martinez-Fundichely, A., Dixon, A., & Khurana, E. (2022, September 26). Modeling tissue-specific breakpoint proximity of structural variations from whole-genomes to identify cancer drivers. Nature Communications.